Estrés calórico en búfalos de agua, una revisión. I. Efectos del clima en Cuba y particularidades morfológicas de la piel
Resumen
- Antecedentes: De los múltiples efectos ambientales que inciden sobre los animales, los relacionados con el clima ocupan un lugar predominante, debido al carácter cambiante del mismo y a las características fisiológicas de cada especie, para enfrentarlas. Dentro de esta problemática, las sensaciones térmicas son unas de las principales que representan la influencia del clima en la producción animal. Los búfalos de agua son animales resistentes a diferentes ambientes, no obstante, se encuentran bajo estrés cuando se exponen a la radiación solar directa o en días en los que la temperatura ambiente es alta. Objetivos. Describir las características del clima en Cuba y las peculiaridades anatómicas, que provocan estrés por calor (EC) en los búfalos. Desarrollo: Se informa la perspectiva del clima para los próximos años, su impacto en la producción y las particularidades morfológicas de la piel de la piel que influyen en la presentación del EC en los búfalos de agua en Cuba. Conclusiones: El búfalo de agua es un animal resistente con particularidades anatomofisiológicas propias de la especie que lo hace sensible al EC por el impacto combinado de la elevada temperatura ambiente y la humedad relativa.
- Palabras clave: búfalos, clima, estrés calórico, piel, particularidades morfológicas de la piel (Fuente: AIMS)
Descargas
Referencias
Aggarwal, A., & Upadhyay R. (2013). Thermoregulation. In: Heat stress and animal productivity. Delhi, India: Springer New Delhi.. https://doi.org/10.1007/978-81-322-0879-2_1
Arunpandian, J., Srivastava, N., Singh, G., Gupta, S. K., Kujur, A., Aswini, G., & Jackson, A. (2021). Effect and strategies to mitigate the heat stress on buffalo bull reproduction. The Indian Journal of Animal Reproduction, 42(2), 8–16. https://doi.org/10.48165/ijar.2021.42.2.2
Bertoni, A., Mota-Rojas, D., Álvarez-Macias, A., Mora-Medina, P., Guerrero-Legarreta, I., Morales-Canela, A., Gómez-Prado, J., José-Pérez, N., & Martínez-Burnes, J. (2019a). Scientific findings related to changes in vascular microcirculation using infrared thermography in the river buffalo. Journal of Animal Behaviour and Biometeorology, 8, 288–297. https://doi.org/10.31893/jabb.20038
Bertoni, A., Napolitano, F., Mota-Rojas, D., Sabia, E., Álvarez-Macías, A., Mora-Medina, P., Morales-Canela, A., Berdugo-Gutiérrez, J., & Guerrero-Legarreta, I. (2019b). Similarities and differences between River buffaloes and cattle: Health, physiological, behavioral and productivity aspects. Journal of Buffalo Science, 9, 92–109. https://doi.org/10.6000/1927-520x.2019.08.03.12
Bhakat, C. (2020). Wallowing in Buffalo and summer management. https://doi.org/10.35543/osf.io/juctz
Chauhan, S. S., Rashamol, V. P., Bagath, M., Sejian, V., & Dunshea, F. R. (2021). Impacts of heat stress on immune responses and oxidative stress in farm animals and nutritional strategies for amelioration. International Journal of Biometeorology, 65, 1231-1244. https://doi.org/10.1007/s00484-021-02083-3
Costa, A., De Marchi, M., Battist,i S., Guarducci, M., Amatiste, S., Bitonti, G., Borghese, A. & Boselli, C. (2020). On the effect of the temperature-humidity index on buffalo bulk milk composition and coagulation traits. Frontiers in Veterinary Science, 7, 577-758. https://doi.org/10.3389/fvets.2020.577758
Cubano, G. (2020). Primera contribución nacionalmente determinada (actualizada) República de Cuba. Gobierno cubano, Havana. https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://unfccc.int/sites/default/files/NDC/2022-06/Cuban%2520First%2520NDC%2520%2528Updated%2520submission%2529.pdf&ved=2ahUKEwiViKjwwYGGAxUfTDABHc9YC7cQFnoECBgQAQ&usg=AOvVaw1ApKXEkchh_XVvzHGpGu6C
del Prado, A., Galán, P. E., Batalla, U., & Pardo, G. (2020). Impactos y adaptación al cambio climático en rumiantes. ITEA-Información Técnica Económica Agraria, 116(5): 461-482. https://doi_org/10.12706/itra.2020.038
Dunn, D., Lallo, C. H., Carnadovan, D., & Ram, G. (2013). The performance and heat tolerance of water buffaloes (Buffalypso) at Aripo Livestock Station, Trinidad. Tropical Agriculture (Trinidad), 90(2), 97-108. https://www.researchgate.net/publication/251565281_The_performance_and_heat_tolerance_of_water_buffaloes_Buffalypso_at_Aripo_Livestock_Station_Trinidad?enrichId=rgreq-444518eba767a77903012a5197b612cf-XXX&enrichSource=Y292ZXJQYWdlOzI1MTU2NTI4MTtBUzo5NzI2MDg5MzM3NjUyMkAxNDAwMjAwMjEzMzk0&el=1_x_2&_esc=publicationCoverPdf
El-Shafey, A. A., Emam, M. A., & Kassab, A. A. (2017). Histomorphometric and immunohistochemical characteristics of the skins of Egyptian water buffalo (Bubalus bubalis) and one-humped camel (Camelus dromedarius). Journal of Veterinary Anatomy, 10(1), 1-16. https://fvtm.stafpu.bu.edu.eg/Anatomy%20Veterinary%20Medicine/922/publications/Anwar%20Abdel%20Fattah%20Abdel%20Malek%20El%20Shafey_7.pdf
Fonseca Rivera, C., García Hernández, A., Velázquez Zaldívar, B., Gómez de la Maza Santana, D., Martínez Álvarez, M., González García, I., Cutié Cancino, V., Vázquez Montenegro, R., Pérez Suárez, R., Mitrani Arenal, I., Hidalgo Mayo, A., Cabrales Infante, J., Leyva Pit, L., González Fraguela, E., (2024). Estado del Clima en Cuba 2023. Resumen ampliado Revista Cubana de Meteorología, 30(1), e09. https://www.redalyc.org/articulo.oa?id=701977979009
Garcia, A. R., Silva, L. K. X., Barros, D. V., Lourenço, J. D. B., Martorano, L. G., Lisboa, L. S. S., Rodrigues da Silva, J. A. de Sousa, J. S., & da Silva, A. O. A. D. (2022). Key points for the thermal comfort of water buffaloes in Eastern Amazon. Ciência Rural, 53(1), e20210544. https://doi.org/10.1590/0103-8478cr20210544
Godde, C., Mason-D’Croz, D., Mayberry, D., Thornton, P. K., & Herrero, M. (2021). Risk of climate-related impacts on the livestock sector: A review of the evidence. Global Food Security, 28, https://doi.org/10.1016/j.gfs.2020.100488
Hafez, E. S. E., Badreldin, A. L., & Shafei, M. M. (1955). Skin structure of Egyptian buffaloes and cattle with particular reference to sweat glands. The Journal of Agricultural Science, 46(1), 19-30. https://doi.org/10.1017/S0021859600039587
Ibrahim, R. S., & Hussin, A. M. (2018). Comparative histological study of the integument in buffalo and cow. Diyala Agricultural Sciences Journal, 10 (Special Issue), 24-34. https://www.iasj.net/iasj/download/2ceb6181b348ae46
Kalyan, U. P. V., Vasantha, S. K. I. & Tej, J. N. K. (2022). Effect of seasonal variation in Temperature Humidity Index on milk production and its composition in Murrah buffaloes. Journal of Veterinary and Animal Sciences, 53(1): 89-93. https://doi.org/10.51966/jvas.2022.53.1.89-93
Kiktev, N., Lendiel, T., Vasilenkov, V., Kapralyuk, O., Hutsol, T., Glowacki, S., Kubon, M., & Kowalczyk, Z. (2021). Automated microclimate regulation in agricultural facilities using the air curtain system. Sensors, 21(24), 8182. https://doi.org/10.3390/s21248182
Krishnan, G., Silpa, M.V., & Sejian, V. (2023). Environmental physiology and thermoregulation in farm animals. In: Das, P.K., Sejian, V., Mukherjee, J., Banerjee, D. (eds) Textbook of Veterinary Physiology. Springer, Singapore. https://doi.org/10.1007/978-981-19-9410-4_28
Mafruchati, M., Othman, N. H., & Wardhana, A. K. (2023). Analysis of the impact of heat stress on embryo development of broiler: a literature review. Pharmacognosy Journal, 15(5), https://phcogj.com/sites/default/files/PharmacognJ-15-5-964.pdf#PJ-15-5-1332.indd%3A%3A0
Marai, I. F. M., & Haeeb, A. A. M. (2010). Buffalo's biological functions as affected by heat stress-A review. Livestock Science, 127(2-3), 89-109. https://doi.org/10.1016/j.livsci.2009.08.001
Maylem, E. R. S., Ramos, G. E., Rivera, S. M., Atabay, E. C., & Atabay, E. P. (2023). Development of adaptability of foreign breeds of water buffalo in Philippine tropical climate. Animal Frontiers, 13(5):89–91. https://doi:10.1093/af/vfad41
MINAG (2023). Sistema estadístico pecuario del Ministerio de la Agricultura. La Habana. Cuba.
Mishra, S. R. (2021). Thermoregulatory responses in riverine buffaloes against heat stress: An updated review. Journal of Thermal Biology, 96, 102844. https://doi:10.1016/j.jtherbio.2021.102844
Mota-Rojas, D., Pereira, A. M. F., Wang, D., Martínez-Burnes, J., Ghezzi, M, Hernández-Avalos, I., Lendez, P., Mora-Medina, P., Casas, A., Olmos-Hernández, A., Domínguez, A., Bertoni, A & de Mira Geraldo, A. (2021a). Clinical applications and factors involved in validating thermal windows used in infrared thermography in cattle and river buffalo to assess health and productivity. Animals, 11:2247. https://doi.org/10.3390/ani11082247
Mota-Rojas, D., Titto, C.G., Orihuela, A., Martínez-Burnes, J., Gómez-Prado, J., Torres-Bernal, F., Flores-Padilla, K., Carvajal-de la Fuente, V., & Wang, D., (2021b). Physiological and behavioral mechanisms of thermoregulation in mammals. Animals,11, 1733. https://doi.org/10.3390/ani11061733
Mota-Rojas, D., Braghieri, A., Ghezzi, M., Ceriani, M.C., Martínez-Burnes, J., Lendez, P.A., Pereira, A.M.F., Lezama-García, K., Domínguez-Oliva, A., Casas- Alvarado, A., Sabia, E., Pacelli, C., & Napolitano, F. (2023). Strategies and mechanisms of thermal compensation in newbornwater buffaloes. Animals, 13, 2161. https://doi.org/10.3390/ani13132161
Muralidharan, M. R., & Ramesh, V. (2005). Histological and biochemical studies of the skin of cattle and buffalo. Indian Journal of Animal Research, 39(1), 41-44. https://www.indianjournals.com/ijor.aspx?target=ijor:ijar1&volume=39&issue=1&article=008
Nasr, M. A. F. (2022). Does heat stress influence animal performance?. Egyptian Journal of Animal Production, 59(4), 57-62. https://journals.ekb.eg/article_244953_f4fd8332f650a24054b6415651da1bd0.pdf
Navas, C. A. C. (2023). Tecnologías agroecológicas de pastoreo y la transición hacia agroecosistemas bufalinos sostenibles en el trópico bajo venezolano: una aproximación al tema. Ciencia y Tecnología Agropecuaria, 8(1), 10-17. https://doi.org/10.24054/cyta.v8i1.2857
Pereira, A. M., Vilela, R. A., Titto, C. G., Leme-dos-Santos, T. M., Geraldo, A. C., Balieiro, J. C., Calviello, R. F., Birgel Junior, E. H., & Titto, E. A. (2020). Thermoregulatory responses of heat acclimatized buffaloes to simulated heat waves. Animals, 10(5), 756. http://dx.doi.org/10.3390/ani10050756
Pi-Hua, C., Cheng-Yung, L., &Ching-Feng, W. (2009). The comparison of histology and melanin contents of hairs and skin between the black and white Taiwan water buffalo. Journal of Taiwan Livestock Research, 42, 235–244. https://www.cabidigitallibrary.org/doi/full/10.5555/20103133484
Purohit, P. B., Gupta, J. P., Chaudhri, J. D., Bhatt, T. M., Pawar, M., Srivastava, A., & Patel, M. P. (2020). Effect of heat stress on production and reproduction potential of dairy animals vis-à-vis buffaloes. International Journal of Livestock Research, 10(3), 1-23. http://dx.doi.org/10.5455/ijlr.20191231122709
Raghav, S., Uppal, V., & Gupta, A. (2022). Comparative study on distribution of sebaceous and sweat glands in skin of different domestic animals. Indian Journal of Animal Research, 56(11), 1356-1360. http://doi:10.18805/IJAR.B-4228
Rai, V., Choudhary, P. K., Kumar, P., Maurya, P. K., Maurya, S. K., Kumar, A., & Kumar, R. (2022). Adaptability in buffaloes during spring and summer seasons in eastern plane zone of Uttar Pradesh, India. Indian Journal of Veterinary Sciences and Biotechnology, 18(3), 115-118. https://doi10.21887/ijvsbt.18.3.27
Rai, V., Choudhary, P. K., Maurya, P. K., Kumar, P., Srivastava, D. P., Maurya, S. K., & Kumar, A. (2023). Effect of spring and summer seasons on some bio-physiological markers in buffaloes. Indian Journal of Animal Research, 1, 1-7. http://doi:10.18805/IJAR.B-500
Saravanakumar, V. R. & Thiagarajan, M. (1992). Comparison of sweat glands, skin characters and heat tolerance coefficients amongst Murrah, Surti and nondescript buffaloes. Indian Journal of Animal Science, 62,625–628. https://www.cabidigitallibrary.org/doi/full/10.5555/19932277841
Shafie, M. M., & El-Khair, M. M. A. (1970). Activity of the sebaceous glands of bovines in hot climates. United Arab Republic Journal of Animal Production, 10(1), 81-98. https://ejap.journals.ekb.eg/article_152612_1270ad9eed156acc988ea55f0f593d84.pdf
Shafie, M. M. & Omran, F. I. (2018). Adaptivity of buffalo calves to differ thermal conditions. Egyptian Journal of Agricultural Research, 96(2), 703-714. https://dx.doi.org/10.21608/ejar.2018.136154
Sharma, M., Malik, A., & Thumar, M. (2024). Different Types of Heat Tolerance Indices Used in Dairy Production. The Indian Veterinary Journal, 101(03), 48-52. https://epubs.icar.org.in/index.php/IVJ/article/download/150058/54204/407347
Tomar, A. S., Navadiya, D., Singh, D., Swami, M. K., Agravat, P. H., & Islam, M. M. (2024). Behavioral differences between sheep, goat, cattle and buffalo. Vigyan Varta 5(7), 10-17. www.vigyanvarta.com
Umar, S. I. U., Konwar, D., Khan, A., Bhat, M. A., Javid, F., Jeelani, R., Nabi, B., Najar, A. A., Kumar, D., & Brahma, B. (2021). Delineation of temperature-humidity index (THI) as indicator of heat stress in riverine buffaloes (Bubalus bubalis) of a sub-tropical Indian region. Cell stress and Chaperones, 26(4), 657-669. https://doi.org/10.1007/s12192-021-01209-1
Upadhyay, R., & Chaiyabutr (2017). Thermal balance in the buffalo species. En: Pressicce, G.A. The Buffalo (Bubalus bubalis): Production and Research, Bentham Science Publishers: Sharjah, United Arab Emirates. Chapter 5, 105-144. https://doi.10.2174/9781681084176117010008
Vilela, R. A., Lourenço Junior, J. D. B., Jacintho, M. A. C., Barbosa, A. V. C., Pantoja, M. H. D. A., Oliveira, C. M. C., & Garcia, A. R. (2022). Dynamics of thermolysis and skin microstructure in water buffaloes reared in humid tropical climate - A microscopic and thermographic study. Frontiers in Veterinary Science, 9, 871206. https://doi.org/10.3389/fvets.2022.871206
Wankar, A. K., Rindh, S. N., & Doijad, N. S. (2021). Heat stress in dairy animals and current milk production trends, economics, and future perspectives: the global scenario. Tropical Animal Health and Production, 53,70. https://doi.10.1007/s11250-020-02541-x
ZHANG, Y., COLLI, L., BARKER, J. S. F. (2020). ASIAN WATER BUFFALO: DOMESTICATION, HISTORY AND GENETICS. ANIMAL GENETICS, 51, 177–191. HTTPS://DOI.ORG/10.1111/AGE.12911