Biorrefinería marina: oportunidades y desafíos para la economía cubana

Authors

Abstract

Antecedentes: La biorrefinería marina es un concepto emergente en la industria que busca maximizar la utilización de los recursos naturales a través de procesos sostenibles y eficientes. Esta se enfoca en el aprovechamiento de recursos marinos en respuesta a la necesidad de encontrar alternativas a los procesos industriales tradicionales que suelen generar grandes cantidades de residuos y consumir recursos de manera no renovable. Realizar una revisión de la literatura científica sobre la importancia de los productos derivados de los desperdicios de la industria acuícola, con un enfoque de biorrefinería en el contexto de la realidad cubana. Desarrollo: Se realizó una búsqueda de información en la literatura científica especializada; sintetizándose lo más importante, se logró definir el concepto de biorrefinería, basado en la utilización de desechos de la industria acuícola, los productos que se obtienen de la misma, así como sus principales características y aplicaciones y se planteó la importancia y ventajas de aplicar este concepto a la realidad cubana. Conclusiones: La biorrefinería a partir de desechos de la industria pesquera, es un enfoque innovador que busca aprovechar al máximo todos sus componentes, incluidos los subproductos y desechos generados, esta estrategia está muy relacionada con los principios de economía circular y promueve la sostenibilidad de la industria.

Palabras clave: biorrefinería marina; sostenible; acuícola; desechos; economía circular (Fuente: MESH)

Downloads

Download data is not yet available.

References

Al-Rooqi, M. M., Hassan, M. M., Moussa, Z., Obaid, R. J., Suman, N. H., Wagner, M. H., & Ahmed, S. A. (2022). Advancement of chitin and chitosan as promising biomaterials. Journal of Saudi Chemical Society, 26(6). DOI:https://doi.org/10.1016/j.jscs.2022.101561

Al Shaqsi, N. H. K., Al Hoqani, H. A. S., Hossain, M. A., & Al Sibani, M. A. (2020). Isolation, characterization and standardization of demineralization process for chitin polymer and minerals from the crabs waste of Portunidae segnis. Advances in Biomarker Sciences and Technology, 2, 45-58. DOI:https://doi.org/10.1016/j.abst.2020.10.002

Antelo, L. T., de Hijas-Liste, G. M., Franco-Uría, A., Alonso, A. A., & Pérez-Martín, R. I. (2015). Optimisation of processing routes for a marine biorefinery. Journal of Cleaner Production, 104, 489-501. DOI:https://doi.org/10.1016/j.jclepro.2015.04.105

Arias, A., Feijoo, G., & Moreira, M. T. (2023). Biorefineries as a driver for sustainability: Key aspects, actual development and future prospects. Journal of Cleaner Production, 418(137925). DOI:https://doi.org/10.1016/j.jclepro.2023.137925

Bauer, J. L., Villegas, L. F., & Zucchetti, A. (2022). Aplicaciones del quitosano en la agricultura, la industria y la salud. South Florida Journal of Environmental and Animal Science, 2(2), 37-45. DOI:10.53499/sfjeasv2n2-001

Bose, I., Singh, R., Negi, P., & Singh, Y. (2021). Chitin as bio-based nanomaterial in packaging: A review. Materialstoday Proceedings, 46, 11254-11257. DOI:https://doi.org/10.1016/j.matpr.2021.02.656

Burillo-Montufar, J. C., González-Cantú, J., & Piñon-Carmona, I. L. (2019). Evolución del uso del quitosano en el tratamiento de agua.

Cabanillas-Bojórquez, L. A., Gutiérrez-Grijalva, E. P., & José Basilio-Heredia, J. (2020). Desechos de camarón: un coctel de oportunidades para la industria. Ciencia, 71(4).

Chan, K., Chen, S., & Chen, P. (2018). Astaxanthin attenuated thrombotic risk factors in type 2 diabetic patients. Journal of Functional Foods, 53, 22-27. DOI:https://doi.org/10.1016/j.jff.2018.12.012

Cheba, B. A. (2020). Chitosan: Properties, Modifications and Food Nanobiotechnology. Procedia Manufacturing, 46, 652-658. DOI:https://doi.org/10.1016/j.promfg.2020.03.093

Cheng, A. C., Peng, X., Chen, W., Tseng, D. Y., Tan, Z., Liu, H., & Liu, C. H. (2023). Dietary probiotic Aspergillus niger preparation improves the growth performance, health status, and gut microbiota of white shrimp, Penaeus vannamei. Aquaculture, 577(739988). DOI:https://doi.org/10.1016/j.aquaculture.2023.739988

Cheong, J. Y., Muskhazli, M., Nor Azwady, A. A., Ahmad, S. A., & Adli, A. A. (2020). Three dimensional optimisation for the enhancement of astaxanthin recovery from shrimp shell wastes by Aeromonas hydrophila. Biocatalysis and Agricultural Biotechnology, 27. DOI:https://doi.org/10.1016/j.bcab.2020.101649

Concepción, L. (2019). Technological proposal to produce chitin and chitosan from crustacean exoskeletons. (Trabajo de diploma), Universidad Central de Las Villas, Santa Clara.

Da Silva, A. K. N., Rodriguez, B. D., Da Silva, L. H. M., & Rodrigues, A. M. D. C. (2018). Drying and extraction of astaxanthin from pink shrimp waste (Farfantepenaeus subtilis): The applicability of spouted beds. Food Science and Technology, 38(1). DOI:10.1590/fst.31316

El-Bialy, H. A. A., & Abd El-Khalek, H. H. (2020). A comparative study on astaxanthin recovery from shrimp wastes using lactic fermentation and green solvents:an applied model on minced Tilapia. Journal of Radiation Research and Applied Sciences, 13(1), 594-605. doi DOI:https://doi.org/10.1080/16878507.2020.1789388

Fan, Z., Wang, L., Qin, Y., & Li, P. (2023). Activity of chitin/chitosan/chitosan oligosaccharide against plant pathogenic nematodes and potential modes of application in agriculture: A review. Carbohydrate Polymers, 306(120592). DOI:https://doi.org/10.1016/j.carbpol.2023.120592

Gao, J., You, J., Kang, J., Nie, F., Ji, H., & Liu, S. (2020). Recovery of astaxanthin from shrimp (Penaeus vannamei) waste by ultrasonic-assisted extraction using ionic liquid-in-water microemulsions. Food Chemistry, 325. DOI:https://doi.org/10.1016/j.foodchem.2020.126850

García-Moreno, P. J., Khanum, M., Guadix, A., & Guadix, E. M. (2014). Optimization of biodiesel production from waste fish oil. Renewable Energy, 68, 618-624. DOI:https://doi.org/10.1016/j.renene.2014.03.014

García‐Santiago, X., Franco‐Uría, A., Antelo, L. T., Vázquez, J. A., Pérez‐Martín, R., Moreira, M. T., & Feijoo, G. (2021). Eco‐efficiency of a marine biorefinery for valorization of cartilaginous fish biomass. Journal of Industrial Ecology, 25(3), 789-801.

Giannaccare, G., Pellegrini, M., Senni, C., Bernabei, F., Scorcia, V., & Cicero, A. F. G. (2020). Clinical Applications of Astaxanthin in the Treatment of Ocular Diseases: Emerging Insights. Mar Drugs, 18(5). DOI:10.3390/md18050239

Gómez-Ríos, D., Barrera-Zapata, R., & Ríos-Estepa, R. (2017). Comparison of process technologies for chitosan production from shrimp shell waste: A techno-economic approach using Aspen Plus. Food and Bioproducts Processing, 103, 49-57. DOI:https://doi.org/10.1016/j.fbp.2017.02.010

Gómez Millán, G. (2015). Biorrefinerías, sistemas integrados para el futuro. Ciencia y Desarrollo.

González-Delgado, A. D., Moreno-Sader, K. A., & Martínez-Consuegra, J. D. (2022). Biorrefinación sostenible del camarón: desarrollos desde la Ingeniería de Procesos Asistida por Computador.

González-Delgado, Á. D., Moreno-Sader, K. A., & Martínez-Consuegra, J. D. (2022). Biorrefinación sostenible del camarón: desarrollos desde la Ingeniería de Procesos Asistida por Computador: Corporación Universitaria Minuto de Dios-UNIMINUTO.

Haque, R., Sawant, P. B., Sardar, P., M., X. K. A., Varghese, T., K., C. N., & Naik, V. A. (2021). Synergistic utilization of shrimp shell waste-derived natural astaxanthin with its commercial variant boosts physio metabolic responses and enhances colouration in discus (Symphysodon aequifasciatus). Environmental Nanotechnology, Monitoring & Management, 15(100405). DOI:https://doi.org/10.1016/j.enmm.2020.100405

Haque, R., Sawant, P. B., Sardar, P., Varghese, T., Xavier, K. A. M., Chadha, N. K., & Pattanaik, S. S. (2023). Shrimp shell waste-derived astaxanthin in synergistic combination with its commercial variant augments gonadal maturation and upregulates vitellogenin gene expression of discus (Symphysodon aequifasciatus). Aquaculture, 562. DOI:https://doi.org/10.1016/j.aquaculture.2022.738828

Ingle, P. U., Shende, S. S., Shingote, P. R., Mishra, S. S., Sarda, V., Wasule, D. L., & Gade, A. (2022). Chitosan nanoparticles (ChNPs): A versatile growth promoter in modern agricultural production. Heliyon, 8(11). DOI:https://doi.org/10.1016/j.heliyon.2022.e11893

Jafari, Z., Bigham, A., Sadeghi, S., Dehdashti, S. M., Rabiee, N., Abedivash, A., & Makvandi, P. (2021). Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications. Journal of Medicinal Chemistry, 65(1), 2-36. DOI:https://doi.org/10.1021/acs.jmedchem.1c01144

Kandasamy, G., Manisekaran, R., & Arthikala, M. K. (2023). Chitosan nanoplatforms in agriculture for multi-potential applications - Adsorption/removal, sustained release, sensing of pollutants & delivering their alternatives – A comprehensive review. Environmental Research(117447). DOI:https://doi.org/10.1016/j.envres.2023.117447

Kedir, W. M., Abdi, G. F., & Goro, M. M. (2022). Pharmaceutical and drug delivery applications of chitosan biopolymer and its modified nanocomposite: A review. Heliyon, 8(8). DOI:https://doi.org/10.1016/j.heliyon.2022.e10196

Kiehbadroudinezhad, M., Hosseinzadeh-Bandbafha, H., Varjani, S., Wang, Y., Peng, W., Pan, J., & Tabatabaei, M. (2023). Marine shell-based biorefinery: A sustainable solution for aquaculture waste valorization. Renewable Energy, 206, 623-634. DOI:https://doi.org/10.1016/j.renene.2023.02.057

Kumari, R., Kumar, M., Vivekanand, V., & Pareek, N. (2023). Chitin biorefinery: A narrative and prophecy of crustacean shell waste sustainable transformation into bioactives and renewable energy. Renewable and Sustainable Energy Reviews, 184, 113595. DOI:https://doi.org/10.1016/j.rser.2023.113595

Lima, S. G. M., Freire, M. C. L. C., Oliveira, V. D. S., Solisio, C., Converti, A., & De Lima, Á. A. N. (2021). Astaxanthin Delivery Systems for Skin Application: A Review. Mar Drugs, 19(9). DOI:https://doi.org/10.3390/md19090511

Mao, X., Guo, N., Sun, J., & Xue, C. (2017). Comprehensive utilization of shrimp waste based on biotechnological methods: A review. Journal of Cleaner Production, 143, 814-823. DOI:https://doi.org/10.1016/j.jclepro.2016.12.042

Maschmeyer, T., Luque, R., & Selva, M. (2020). Upgrading of marine (fish and crustaceans) biowaste for high added-value molecules and bio (nano)-materials. Chemical Society Reviews, 49(13), 4527-4563.

Mathew, G. M., Mathew, D. C., Sukumaran, R. K., Sindhu, R., Huang, C. C., Binod, P., & Pandey, A. (2020). Sustainable and eco-friendly strategies for shrimp shell valorization. Journal Pre-proof. DOI: https://doi.org/10.1016/j.envpol.2020.115656

Meramo-Hurtado, S., Alarcón-Suesca, C., & Gonzalez-Delgado, A. D. (2020). Exergetic sensibility analysis and environmental evaluation of chitosan production from shrimp exoskeleton in Colombia. Journal of Cleaner Production, 248(119285). DOI:https://doi.org/10.1016/j.jclepro.2019.119285

Mohammadzadeh Pakdel, P., & Peighambardoust, S. J. (2018). Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydrate Polymers, 201, 264-279. DOI:https://doi.org/10.1016/j.carbpol.2018.08.070

Mohan, K., Muralisankar, T., Jayakumar, R., & Rajeevgandhi, C. (2021). A study on structural comparisons of α-chitin extracted from marine crustacean shell waste. Carbohydrate Polymer Technologies and Applications, 2. DOI:https://doi.org/10.1016/j.carpta.2021.100037

Moreno-Sader, K. A., Martínez-Consuegra, J., & González-Delgado, A. D. (2021). An integrated biorefinery approach via material recycle/reuse networks for the extraction of value-added components from shrimp: Computer-aided simulation and environmental assessment. Food and Bioproducts Processing, 127, 443-453. DOI:https://doi.org/10.1016/j.fbp.2021.04.003

Muñoz, F. L., Meramo, S., Ricardez-Sandoval, L., Gonzalez, A. D., Castillo, B. C., Gonzalez-Quiroga, A., & León-Pulido, J. (2023). Insights from an exergy analysis of a green chemistry chitosan biorefinery. Chemical Engineering Research and Design, 194, 666-677. DOI:https://doi.org/10.1016/j.cherd.2023.04.038

Muzzarelli, R. A. A., Boudrant, J., Meyer, D., Manno, N., Demarchis, M., & Paoletti, M. G. (2012). Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydrate Polymers, 87(2), 995-1012. DOI:https://doi.org/10.1016/j.carbpol.2011.09.063

Myint, A. A., Hariyanto, P., Irshad, M., Ruqian, C., Wulandari, S., Hong, M. E., & Kim, J. (2022). Strategy for high-yield astaxanthin recovery directly from wet Haematococcus pluvialis without pretreatment. Bioresource Technology, 346. DOI:https://doi.org/10.1016/j.biortech.2021.126616

Ngasotter, S., Martin-Xavier, K. A., Malemngamba-Meitei, M., Waikhom, D., Pathak, J., & Khogen-Singh, S. (2023). Crustacean shell waste derived chitin and chitin nanomaterials for application in agriculture, food, and health – A review. Carbohydrate Polymer Technologies and Applications, 6(100349). DOI:https://doi.org/10.1016/j.carpta.2023.100349

Nunes Da Silva, M., Santos, C. S., Cruz, A., López-Villamor, A., & Vasconcelos, M. W. (2021). Chitosan increases Pinus pinaster tolerance to the pinewood nematode (Bursaphelenchus xylophilus) by promoting plant antioxidative metabolism. Scientific Reports, 11(1). DOI:10.1038/s41598-021-83445-0

Örlygsson, G., Laxdal, E. H., Kárason, S., Dagbjartsson, A., Gunnarsson, E., Ng, C. H., & Jónsson, H. (2022). Mineralization in a Critical Size Bone-Gap in Sheep Tibia Improved by a Chitosan-Calcium Phosphate-Based Composite as Compared to Predicate Device. Materials, 15(3). DOI:10.3390/ma15030838

Oyekunle, D. T., & Omoleye, J. A. (2019). Effect of particle sizes on the kinetics of demineralization of snail shell for chitin synthesis using acetic acid. Heliyon, 5(11). DOI:https://doi.org/10.1016/j.heliyon.2019.e02828

Quiroz, P., Rocha, R., Salas, A., Solano, D., & Iglesias-Navas, M. (2021). Análisis del mercado potencial de los productos pesqueros y sus subproductos en la Región Caribe Investigación y Desarrollo en TIC, 12(1), 13-40.

Rahman, M. M., & Maniruzzaman, M. (2023). A new route of production of the meso-porous chitosan with well-organized honeycomb surface microstructure from shrimp waste without destroying the original structure of native shells: Extraction, modification and characterization study. Results in Engineering, 19(101362). DOI:https://doi.org/10.1016/j.rineng.2023.101362

Rodrigues-De Souza, J., & Giudici, R. (2021). Effect of diffusional limitations on the kinetics of deacetylation of chitin/chitosan. Carbohydrate Polymers, 254(Carbohydrate Polymers). DOI:https://doi.org/10.1016/j.carbpol.2020.117278

Routray, W., Dave, D., Cheema, S. K., Ramakrishnan, V. V., & Pohling, J. (2019). Biorefinery approach and environment-friendly extraction for sustainable production of astaxanthin from marine wastes. Critical reviews in biotechnology, 39(4), 469-488.

Ruangwicha, J., Cheirsilp, B., & Suyotha, W. (2024). Green biorefinery of shrimp shell waste for α-chitin and high-value co-products through successive fermentation by co-lactic acid bacteria and proteolytic fungus. Bioresource Technology, 393, 130106. DOI:https://doi.org/10.1016/j.biortech.2023.130106

Sekoai, P. T., Chunilall, V., Msele, K., Buthelezi, L., Johakimu, J., Andrew, J., & Swartbooi, A. (2023). Biowaste biorefineries in South Africa: Current status, opportunities, and research and development needs. Renewable and Sustainable Energy Reviews, 188(113870). DOI:https://doi.org/10.1016/j.rser.2023.113870

Sieber, V., Hofer, M., Brück, W. M., Garbe, D., Brück, T., & Lynch, C. A. (2018). ChiBio: An Integrated Bio-refinery for Processing Chitin-Rich Bio-waste to Specialty Chemicals. Grand Challenges in Marine Biotechnology, 555–578.

Spriano, S., Riccucci, G., Örlygsson, G., Ng, C. H., Verné, E., Sehn, F. P., & Ferraria, S. (2023). Coating of bioactive glasses with chitosan: The effects of the glass composition and coating method on the surface properties, including preliminary in vitro results. Surface and Coatings Technology, 470(129824). DOI:https://doi.org/10.1016/j.surfcoat.2023.129824

Su, W., Xu, W., Polykov, N. E., Dushkin, A. V., Qiao, P., & Su, W. (2023). Zero-waste utilization and conversion of shrimp shell by mechanochemical method. Elsevier Journal of Cleaner Production, 425(139028). DOI:https://doi.org/10.1016/j.jclepro.2023.139028

Sun, C., Fu, D., Chen, M., Zheng, X., & Yu, T. (2018). Chitin isolated from yeast cell wall induces the resistance of tomato fruit to Botrytis cinerea. Carbohydrate Polymers, 199, 341-352. DOI:https://doi.org/10.1016/j.carbpol.2018.07.045

Sun, X., Wu, Q., Picha, D. H., Ferguson, M. H., Ndukwe, I. E., & Azadi, P. (2021). Comparative performance of bio-based coatings formulated with cellulose, chitin, and chitosan nanomaterials suitable for fruit preservation. Carbohydrate Polymers, 259( 117764). DOI:https://doi.org/10.1016/j.carbpol.2021.117764

Ta, Q., Ting, J., Harwood, S., Browning, N., Simm, A., Ross, K., & Al-Kassas, R. (2021). Chitosan nanoparticles for enhancing drugs and cosmetic components penetration through the skin. Chitosan nanoparticles for enhancing drugs and cosmetic components penetration through the skin, 160(105765). DOI:https://doi.org/10.1016/j.ejps.2021.105765

Talukdar, J., Dasgupta, S., Nagle, V., & Bhadra, B. (2020). COVID-19: Potential of microalgae derrived natural astaxanthin as adjunctive supplement. Medicine. DOI:10.2139/ssrn.3579738

Thakur, V. K., & Voicu, S. I. (2016). Recent advances in cellulose and chitosan based membranes for water purification: A concise review Carbohydrate Polymer, 146, 148-165. DOI:10.1016/j.carbpol.2016.03.030

Venugopal, V. (2021). Valorization of seafood processing discards: Bioconversion and bio-refinery approaches. Frontiers in Sustainable Food Systems, 5, 611835.

Venugopal, V. (2022). Green processing of seafood aste biomass towards blue economy. Current Research in Environmental Sustainability, 4(100164). DOI:https://doi.org/10.1016/j.crsust.2022.100164

Vicente, F. A., Hren, R., Novak, U., Čuček, L., Likozar, B., & Vujanović, A. (2024). Energy demand distribution and environmental impact assessment of chitosan production from shrimp shells. Renewable and Sustainable Energy Reviews, 192, 114204. DOI:https://doi.org/10.1016/j.rser.2023.114204

Vicente, F. A., Ventura, S. P. M., Passos, H., Dias, A. C. R. V., Torres-Acosta, M. A., Novak, U., & Likozar, B. (2022). Crustacean waste biorefinery as a sustainable cost-effective business model. Chemical Engineering Journal, 442, 135937. DOI:https://doi.org/10.1016/j.cej.2022.135937

Wang, J., & Zhuang, S. (2022). Chitosan-based materials: Preparation, modification and application. Journal of Cleaner Production, 335(131825). DOI:https://doi.org/10.1016/j.jclepro.2022.131825

Wulandari, S., Choi, J., Kurniawan, R. G., Sugiarto, J. R., Myint, A. A., Kwak, S. K., & Kim, J. (2023). Synthesis of highly stable encapsulated astaxanthin/β-cyclodextrin microparticles using supercritical CO2 as an antisolvent. Journal of CO2 Utilization, 75. DOI:https://doi.org/10.1016/j.jcou.2023.102575

Yang, Y., Yazdani, L., Aghbashlo, M., Gupta, V. K., Pan, J., Tabatabaei, M., & Rajaei, A. (2023). Product diversification to boost the sustainability of the shrimp processing industry: The case of shrimp-waste driven chitosan-based food Pickering emulsion stabilizers. Journal of Cleaer Production, 425(138958). doi:https://doi.org/10.1016/j.jclepro.2023.138958

Yihun, F. A. (2022). Nanochitin preparation and its application in polymer nanocomposites: a review. Emergent Materials, 5.

Zhang, L., Li, Y., & Gao, J. (2023). Selectively extraction of astaxanthin from Haematococcus pluvialis by aqueous biphasic systems composed of ionic liquids and deep eutectic solutions. Food Chemistry, 434. DOI:https://doi.org/10.1016/j.foodchem.2023.137399

Zhang, L., Zhang, R., Jiang, X., Wu, X., & Wang, X. (2023). Dietary supplementation with synthetic astaxanthin and DHA interactively regulates physiological metabolism to improve the color and odor quality of ovaries in adult female Eriocheir sinensis. Food Chemistry, 430. DOI:https://doi.org/10.1016/j.foodchem.2023.137020

Zuorro, A., Moreno-Sader, K. A., & González-Delgado, Á. D. (2021). Evaluating the feasibility of a pilot-scale shrimp biorefinery via techno-economic analysis. Journal of Cleaner Production, 320, 128740. DOI:https://doi.org/10.1016/j.jclepro.2021.128740

Published

2024-04-30

Issue

Section

Acuicultura

How to Cite

Biorrefinería marina: oportunidades y desafíos para la economía cubana. (2024). Apm, 36(1). https://apm.reduc.edu.cu/index.php/rpa/article/view/e120

Most read articles by the same author(s)