Estado actual de la congelación lenta y la vitrificación de embriones. Perspectivas futuras

Autores/as

Resumen

  • Antecedentes: La crioconservación de embriones es la tecnología que permite su almacenamiento a bajas temperaturas por periodos extensos de tiempo. Esta técnica posibilita la extensión de los programas de mejora genética y la conservación de razas y especies en peligro. Describir el estado actual de la congelación lenta y la vitrificación de embriones de interés ganadero y sus perspectivas futuras. Desarrollo: Debido a la demanda actual de la industria ganadera, es necesaria la aplicación de una técnica de crioconservación eficiente, sobre todo en aquellos embriones producidos in vitro, ya que poseen una menor criotolerancia. Los procesos más utilizados son la vitrificación y la congelación lenta son, aunque ambas técnicas poseen sus ventajas y limitaciones. Conclusiones: La vitrificación es una técnica económica y rápida, que evita los daños físicos provocados por la formación de los cristales de hielo; sin embargo, requiere de un mayor entrenamiento por parte del operador y no posee una alta estandarización como la congelación lenta. Además, la técnica de descongelación se adapta más a las condiciones de campo que la desvitrificación.
  • Palabras claves: congelación, crioconservación, embriones, ganadería, vitrificación (Fuente: AGROVOC)

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Arav, A., Natan, Y., Kalo, D., Komsky-Elbaz, A., Roth, Z., Levi-Setti, P. E., Leong, M., & Patrizio, P. (2018). A new, simple, automatic vitrification device: preliminary results with murine and bovine oocytes and embryos. Journal of Assisted Reproduction and Genetics, 35(7), 1161-1168. https://doi.org/10.1007/s10815-018-1210-9

Arshad, U., Sagheer, M., González, F. B., Hassan, M., & Sosa, F. (2021). Vitrification improves in-vitro embryonic survival in Bos taurus embryos without increasing pregnancy rate post embryo transfer when compared to slow-freezing: A systematic meta-analysis. Cryobiology, 101, 1-11. https://doi.org/10.1016/j.cryobiol.2021.06.007

Barba, M. E. (2016). Evaluación de dos crioprotectores en la congelación de embriones bovinos producidos in vitro en medios sintéticos. (Tesis de maestría). Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Cuenca, Ecuador. http://dspace.ucuenca.edu.ec/handle/123456789/26153

Bharti, A. V., Layek S. S., Raj, S., Gorani, S., & Doultani, S. (2022). Vitrification of bovine in vitro-produced embryos: can it replace slow freezing in bovines? Reproduction, Fertility and Development, 35(2), 146-146. https://doi.org/10.1071/RDv35n2Ab41

Blackburn, H. D., Costa, H., Purdy, P. H. (2023). Incorporation of Biotechnologies into gene banking strategies to facilitate rapid reconstitution of populations. Animals, 13(2)0. https://doi.org/10.3390/ani13203169

Bojic, S., Murray, A., Bentley, B., Spindler, R., Pawlik, P., Cordeiro, J. L., Bauer, R., & Magalhães. (2021). Winter is coming: The future of cryopreservation. BMC Biology, 19(52). https://doi.org/10.1186/s12915-021-00976-8

Bradley, J., & Swann, K. (2019). Mitochondria and lipid metabolism in mammalian oocytes and early embryos. The International Journal of Developmental Biology, 63, 93–103. https://doi.org/10.1387/ijdb.180355ks

Cabodevila, J., & Teruel, M. (2001). Criopreservación de embriones bovinos. En: Palma, G.A (ed.) Biotecnología de la reproducción. Balcarce, Ediciones INTA. 149-174.

Canesin, H. S., Ortiz, I., Filho, A. N. R., Salgado, R. M., Brom-de-Luna, J. G., & Hinrichs, K. (2020). Effect of warming method on embryo quality in a simplified equine embryo vitrification system. Theriogenology, 151, 151-158. https://doi.org/10.1016/j.theriogenology.2020.03.012

Carrascal, E. L., Moreira, A., Ruiz, A., Penitente, J. M., Hansen,P. J., Torres. C. A ., & Block, J. (2022). Effect of addition of ascorbate, dithiothreitol or a caspase-3 inhibitor to cryopreservation medium on post-thaw survival of bovine embryos produced in vitro. Reproduction in Domestic Animals, 57(9), 1074-1081. https://doi.org/10.1111/rda.14182

Choi, H. W., & Jang, H. (2022). Application of nanoparticles ang melatonin for cryopreservation of gametes and embryos. Current Issues in Molecular Biology. 44(9), 4028-4044. https://doi.org/10.3390/cimb44090276

Correia, L. F. L., Leal, G. R., Brandão, F. Z., Btista, R. I. T. P., & Souza, J. M. G. (2024). Effect of antifreeze protein I in the freezing solution on in vivo-derived sheep embryos. Research in Veterinary Science, 168, 105-132. https://doi.org/10.1016/j.rvsc.2023.105132

de Camargo, J., Rodrigues, R., Santana, R., Borba, D., Aparecida, A., Anacleto, K. R., Camponogara, R., Basso, A. C., Nogueira, M., Kubo, P., Gouveia, M. F., & Sudano, M. J. (2022). Evaluation of serum-free culture medium for enhanced vitrification cryosurvival of bovine in vitro-derived embryos. Livestock Science, 260, 1871-1413. https://doi.org/10.1016/j.lisci.2022.104922

Do, V. H., Catt, S., Kinder, J. E., Walton, S., & Taylor-Robinson, A.W. (2019). Vitrification of in vitro-derived cattle embryos: targeting enhancement of quality by refining technology and standardizing procedures. Reproduction, Fertility and Development, 31(5), 837-846. https://doi.org/10.1071/RD18352

Do, V.H., & Taylor-Robinson, A. H. (2020). Cryopreservation of in vitro-produced bovine embryos by vitrification: In pursuit of a simplified, standardized procedure that improves pregnancy rates to promote cattle industry use. Biotechnology in Animal Husbandry, 36(3), 251-270. https://doi.org/10.2298/BAH2003251H

Dochi, O. (2019). Direct transfer of frozen-thawed bovine embryos and its application in cattle reproduction management. Journal of Reproduction and Development, 65(5). 389-396. https://doi.org/10.1262/jrd.2019-025

Doultani, S., Sharma, P., Patel, M., & Saripadiya, B. (2024). Emerging trends in cryopreservation techniques for bovine embryos: Advancements and applications. International Journal of Creative Research Throughts, 12(9), 1-11.

Ekpo, M. D., Xie, J., Hu, Y., Liu, X., Liu, F., Xiang, J., Zhao, R., Wang, B., & Tan, S. (2022). Antifreeze proteins: Novel applications and navigations towards their clinical application in cryobanking. International Journal of Molecular Sciences, 23(5), 2639. https://doi.org/10.3390/ijms23052639

Estudillo, E., Jimenez, A., Bustamante-Nieves, P. E., Palacios-Reyes, C., Velasco, I., & Lopez-Ornelas, A. (2021). Cryopreservation of gametes and embryos and their molecular changes. International Journal of Molecular Sciences, 22(19). https://doi.org/10.3390/ijms221910864

Ferré, L. B., Kjelland, M. E., Taiyeb, A. M., Campos, F., & Ross, P.J. (2020). Recent progress in bovine in vitro-derived embryo cryotolerance: Impact of in vitro culture systems, advances in cryopreservation and future considerations. Reproduction in Domestic Animals, 55, 659-676. https://doi.org/10.1111/rda.13667

Fryc, K., Nowak, A., Kij-Mitka, B., Kochan, J., Bartlewski P. M., & Murawski, M. (2022). Morphokinetic changes in vitrified and non-vitrified in vitro-derived ovine embryos. Theriogenology, 187, 58-63. https://doi.org/10.1016/j.theriogenology.2022.04.027

Garcia, X., Vicente, J. S., & Francisco, M. (2020). Developmental plasticity in response to embryo cryopreservation: The importance of the vitrification device in rabbits. Animals, 10(804), 1-17. https://doi.org/10.3390/ani10050804

Gómez, E., Carrocera, S., Martín, D., Pérez, J. J., Prendes, J., Prendes, J. M., Vázquez, A., Murillo, A., Gimeno., & Muñoz, M. (2020). Efficient one-step direct transfer to recipients of thawed bovine embryos cultured in vitro and frozen in chemically defined medium. Theriogenology, 146, 39-47. https://doi.org/10.1016/j.theriogenology.2020.01.056

Gonzalez, N., Martínez, I., Schezer, J., Jung, S., Reichenbach, M., Zablotski, Y., Otzdorff, C., Zerbe, H., & Morgas, T. (2022). Vitrification and in-straw warming do no affect pregnancy rates of biopsied bovine embryos. Theriogenology, 191, 221-230. https://doi.org/10.1016/j.theriogenology.2022.07.021

Ivanov, D., Mazzoccoli, G., Anderson, G., Linkova, N., Dyatlova, A., Mironova, E., Polyakova, V., Kvetnoy, I., Evsyukova, I., Carbone, A., & Nasyrov, R. (2021). Melatonin, its benefical effects on embryogenesis from mitigating oxidative stress to regulating gene expression. International Journal of Molecular Sciences, 22(11). https://doi.org/10.3390/ijms2211585

Jang, H., Kwon, H. J., Sun, W. S., Hwang, S., Hwang, I. J., Kim, S., Lee, J. H., Lee, S. G., & Lee, J. W (2020). Effects of Leucosporidium-derived ice-binding protein (LeIBP) on bull sêmen cryopreservation.

Jones, A. L. (2021). Cryopreservation of bovine embryos. En: Hooper, R. M (ed.) Bovine Reproduction. John Winley & Sons, Inc, Estados Unidos. 1103-1109. https://doi.org/10.1002/9781119602484.ch87

Kim, W., Yang, S. G., Park, H. J., Kim, J. H., Lee, D. M., Woo, S. M., Kim, H. J., Kim, H. A Jeong, J. H., Lee, M. J., & Koo, D. B. (2020). Comparison of Cryotop and ReproCarreir products for cryopreservation of bovine blastocysts through survival rate and blastocysts quality. Journal of Animal Reproduction and Biotechnology, 35(2), 207-213. https://doi.org/10.12750/JARB.35.2.207

Knetter, C. (2023). Eficiencia de un medio de vitrificación con ficoll y trehalosa sobre la viabilidad de embriones de conejo. (Tesis de grado). Universidad Técnica de Valencia, Escuela Técnica Superior de Ingeniería Agronómica y Medicina Natural, Valencia, España. http://hdl.net/10251/195853

Kurzella, J., Miskel, D., Rings, F., Tholen, E., Tesfaye, D., Schellander, K., Salilew-Wondim, D., Held-Hoelker, E., Große-Brinkhaus, C., Hoelker, M., Kurzella, J., Miskel, D., Franca, R., Tholen, E., Tesfaye, D., Schellander, K., Salilew-Wondim, D., & Held-Hoelker. (2024). Mitochondrial bioenergetic profiles of warmed bovine blastocysts are typically altered after cryopreservation by slow freezing and vitrification. Theriogenology, 214(15), January, 21-32. https://doi.org/10.1016/j.theriogenology.2023.10.002

Li, P., Liu, Y., Yan, L., Jia, Y., Zhao, M., Lv, D., Yao, Y., Ma, W., Yin, D., Liu, F., Gao, S., Wusiman, A., Yang, K., Zhang, L., & Liu, G. (2023). Melatonin improves the vitrification of sheep morulae by modulating transcriptome. Threiogenology, 10. https://doi.org/10.3389/fvets.2023.1212047

Li, X., Wang, L., Yin, C., Lin, J., Wu, Y., Chen, D., Qiu, C., Jia, B., Huang, J., Jiang, X, Yang, L., & Liu, L. (2020). Antifreeze protein from Anatolia polita (ApAFP914) improved outcome of vitrified in vitro sheep embryos. Cryobiology, 93, 109-114. https://doi.org/10.1016/j.cryobiology.2020.02.001

Loutradi, K. E., Kolibianakis, E. M., Venetis, C. A., Papanikolaou, E. G., Pados, G., Bontis, I., & Tarlatzis, B. C. (2008) Cryopreservation of human embryos by vitrification or slowfreezing: a systematic review and meta-analysis. Fertility and Steriliy, 90(1), 186-193. https://doi.org/10.1016/j.fertnstert.2007.06.010

Marcantonini, G., Bartolini, D., Zatini, L., Costa, S., Passerini, M., Rende, M., Luca, G., Basta, G., Murdolo, G., Calafiore, R., & Galli, F. (2022). Natural cryoprotective and cryoprotective agents in cryopreservation: A focus on melatonin. Molecules, 27(10). https://doi.org/10.3390/molecules27103254

Martínez, I., Salas, A., Diaz, J., Ordóñez, E., García, T., Yeste, M., Olegario, C., & Mogas, T. (2024). Blastocoel fluid aspiration improves vitrification outcomes and produces similar sexing results of in vitro- produced cattle embryos compared to microblades biopsy. Theriogenology, 218(1), 142-152. https://doi.org/10.1016/j.theriogenology.2024.01.042

Najafzadeh, V., Bojsen-Møller, J., Pihl, M., Ærenlund, A., Jørgensen, A., Kjærsgaard, K., Træholt, M., Friederike, M., Strøbech, L., & Hyttel, P. (2021) Vitrification yields higher cryo-survival rate than slow freezing in biopsied bovine in vitro produced blastocysts. Theriogenology, 171, 44-54. https://doi.org/10.1016/j.theriogenology.2021.04.020

Oliveira, C. S., da Silva, V. L., de Freitas, C., da Silva, P. M., dos Reis, A. J., & Zoccal, N. (2020). In-straw warming protocol improves survival of vitrified embryos and allows direct transfer in cattle. Cryobiology, 97, 222-225. https://doi.org/10.1016/j.cryobiol.2020.02.007

Pegg, D. E. (2015). Principles of Cryopreservation. En: Wolkers, W.F; Oldenhof, H (eds.) Cryopreservation and Freeze-Drying Protocols, Methods in Molecular Biology, 1257, 3-19. https://doi.org/10.1007/978-1-4939-2193-5_1

Polge, C., Smith, A. U., & Parkes, A. S. (1949). Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature, 164, 666. https://doi.org/10.1038/164666a0

Rajan, R., & Matsumura, K. (2018). Development and Application of Cryoprotectants. En: Iwaya-Inoue, M; Sakurai, M; Uemura, M. (eds) Survival Strategies in Extreme Cold and Desiccation, Advances in Experimental Medicine and Biology, Springer, Singapore, 1081, 339-354. https://doi.org/10.1007/978-981-13-1244-1_18

Rall, W. F. (1987). Factors affecting the survival of mouse embryos cryopreserved by vitrification. Cryobiology, 24, 387-402. https://doi.org/10.1016/0011-2240(87)90042-3

Rall, W. F., & Fahy, G. M. (1985). Ice-free cryopreservation of mouse embryos at -196oC by vitrification. Nature. 313, 573-575. https://doi.org/10.1038/313573a0

Santana, R., Guibu, T., Alves, M.B., Martins, D., Basso, A. C., & Sudano, M. J. (2020). Cellular and apoptotic status monitoring according to the ability and spedd to resume post-cryoconservation embryonic developmet. Theriogenology, 158, 290-296 https://doi.org/10.1016/j.theriogenology.2020.09.026

Souza, J. F., Oliveira, C. M., Lienou, L. L., Cavalcante T. V., Alexandrino E., Santos R. R., Rodrigues A. P .R.,Campello C. C., Figueiredo, J. R., & Dias F. E. F. (2018). Vitrification of bovine embryos followed by in vitro hatching and expansion. Zygote, 26(1), 99-103. https://doi.org/10.1017/s0967199417000570

Sun, W. S., Jang, H., Kwon, H. J., Kim, K. J., Ahn, S. B., Hwang, S., Lee, S. G., Lee, J. H., & Hwang, I. S. (2020). The protective effect of Leucosporidim-derived ice-binding protein (LeIBP) on bovine oocytes and embryos during vitrification. Theriogenology, 151, 137-143. https://doi.org/10.1016/j.theriogenology.2020.04.016

Umair, M., Beitsma, M., de Ruijter-Villani, M., Deelen, C., Herrera, C., Stout, T. A. E., & Claes, A. (2023). Vitrifying expanded equine embryos collapsed by blastocoel aspiration is less damaging than slow-freezing. Theriogenology, 202, 28-35. https://doi.org/10.1016/j.theriogenology.2023.02.028

Vajta, G., & Kuwayama, M. (2006). Improving cryopreservation systems. Theriogenology, 65, 236-234. https://doi.org /j.theriogenology.2005.09.026

Vajta, G., Rienzi, L., & Ubaldi, F. M. (2015). Open versus closed systems for vitrification of human oocytes and embryos. Reproductive BioMedicine Online, 30(4), 325-333. https://doi.org/10.1016/j.rbmo.2014.12.012

Valente, R. S., Marsico, T. V., & Sudano, M. J. (2022). Basic and applied features in the cryopreservation progress of bovine embryos. Animal Reproduction Science, 239. https://doi.org/j.anireprosci.2022.106970

Viana, J. H. M. (2020). Statistics of embryo production and transfer in domestic farm animals. Embryo Technology Newsletter, 39(4).

Vining, L. M., Zak, L. J., Harvey, S. C., & Harvey, K. E. (2021). The role of apoptosis in cryopreserved animal oocytes and embryos. Theriogenology, 173(1), 93-101. https://doi.org/10.1016/j.theriogenology.2021.07.017

Wang, Z., Gao, D., & Shu, Z. (2024). Mechanism, applications and challenges of utilizating nanomaterials in cryoconservation. Advanced Engineering Materials. 26(21). https://doi.org/10.1002/adem.202400800

Whittingham, D. G., Leibo, S. P., & Mazur, P. (1972). Survival of mouse embryos frozen to --196° and -269°C. Science, 178, 411-414. https://doi.org/10.1126/science.178.4059.411

Wu, C. W., & Cheong, S. H. (2023). Evaluation of two-stage delipidation on bovine embryo development and cryotolerance. Reproduction, Fertility and Development, 36(2), 170-171. https://doi.org/10.1071/RDv36n2Ab41

Publicado

02/15/2025

Cómo citar

Navarro Quevedo, H. (2025). Estado actual de la congelación lenta y la vitrificación de embriones. Perspectivas futuras. Revista De Producción Animal, 37. https://apm.reduc.edu.cu/index.php/rpa/article/view/e163

Artículos más leídos del mismo autor/a